МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГТУ», ВГТУ)

Система менеджмента качества

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНЫХ И НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

1.1 «МАТЕМАТИКА И МЕХАНИКА»

(группа научных специальностей)

1.1.8 «МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА»

(научная специальность)

I. Перечень элементов содержания, проверяемых на вступительном испытании по механике дефрмируемого твердого тела

- 1. Понятие о напряжениях, деформациях, перемещениях. Напряженное и деформирование состояния частицы тела.
- 2. Элементы тензорного и векторного анализа. Индексные (тензорные) обозначения. Контравариантные векторы и тензоры.
- 3. Законы преобразования компонент тензоров. Сложение и умножение тензоров.
- 4. Матрицы и действия над ними. Матричное представление вектора в трехмерном пространстве.
- 5. Скалярное произведение вектора на тензор второго ранга и тензора на вектор. Симметрия матриц и тензоров. Главные значения и главные направления симметричных тензоров второго ранга.
- 6. Основные физико-механические свойства реальных сред (упругость, вязкость, пластичность), их влияние на сопротивление материалов деформированию и разрушению.

Теория напряженного состояния

- 7. Вектор напряжений на произвольной площадке. Его связь с тремя векторами напряжений на трех взаимно ортогональных площадках (формула Коши). Тензор напряжений.
- 8. Закон парности касательных напряжений и симметрия тензора напряжений.
- 9. Главные оси и главные нормальные напряжения тензора. Характеристическое уравнение для определения главных напряжений.
- 10. Инварианты тензора напряжений. Главные касательные напряжения. Геометрическая интерпретация тензора напряжений
- 11. Дифференциальные уравнения равновесия и движения частицы тела. Граничные и начальные условия

Теория деформированного состояния

- 12. Вектор перемещения. Относительное удлинение и угловая деформация сдвига. Главные оси и главные деформации.
- 13. Уравнения совместности деформаций. Варианты теории малых

нелинейных деформаций.

14. Тензор скоростей деформаций. Представление компонент тензоров деформаций в криволинейных координатах. Тензоры деформаций Грина и Альманси.

Теория упругости

- 15. Упругий потенциал и дополнительная работа. Связи между напряжениями и деформациями для изотропной и анизотропной сред
- 16. Симметрия матрицы упругих постоянных. Частные виды упругой анизотропии.
- 17. Удельные потенциальная энергия деформации и удельная дополнительная работа линейно-упругого тела.
- 18. Соотношение между напряжениями и деформациями при изменении температуры для изотропного тела.
- 19. Основные уравнения теории упругости. Общая постановка задачи. Постановка задачи в напряжениях. Постановка задачи теории упругости в перемещениях.
- 20. Дифференциальные уравнения равновесия и движения. Принцип Сен-Венана.
- 21. Пространственные задачи теории упругости. Задача Буссинеска о действии сосредоточенной силы на полупространство.
- 22. Задача Герца о сжатии упругих тел.
- 23. Задача о вдавливании осесимметричного штампа.
- 24. Функционалы. Возможные перемещения и изменения напряженного состояния. Вариационные принципы Лагранжа.
- 25. Вариационный метод Рэлея-Ритца решения задач теории упругости.
- 26. Метод Бубнова—Галеркина.
- 27. Упругие пластины. Основные гипотезы. Перемещение, деформации и напряжения в прямоугольных пластинах. Усилия и моменты.
- 28. Дифференциальные уравнения равновесия прямоугольных пластин.

Дифференциальное уравнение изогнутой поверхности пластины при действии поперечных и продольных сил. Граничные условия.

- 29. Частные случаи поперечного изгиба. Осесимметричный изгиб круглых пластин. Решение задач изгиба прямоугольных пластин.
- 30. Применение вариационных методов к расчету задач изгиба стержней и пластины. Потенциальная энергия. Вариационные уравнения и методы их решения.
- 31. Упругие оболочки. Основные понятия и гипотезы. Элементы дифференциальной геометрии срединной поверхности оболочки.
- 32. Деформации, напряжения, усилия и моменты в оболочках. Дифференциальные уравнения равновесия
- 33. Безмоментная теория оболочки вращения. Краевые эффекты.

Теория пластичности

- 34. Условия пластичности Сен-Венана и Мизеса Идеализация диаграмм деформирования и нагружения. Законы упрочнения материалов при простом (пропорциональном) нагружении.
- 35. Физические законы сред, обладающих свойством пластического течения. Теории пластического течения. Ассоциированный закон пластического течения.
- 36. Физические законы пластически упрочняющихся сред. Теория малых упругопластических деформации.
- 37. Метод упругих решений и его разновидности (метод переменных параметров упругости, метод дополнительных деформации). Устойчивость элементов конструкций
- 38. Концепция устойчивости упругих систем. Устойчивость упругих и упругопластических сжатых стержней.
- 39. Выпучивание стержней за пределом упругости при продольном изгибе.
- 40. Теория устойчивости оболочек и пластины в пределах упругости.

II. Требования к уровню подготовки поступающего

Поступающий должен знать/понимать:

- современные научные достижения в области механики деформируемого твердого тела;
- перспективные направления в развитии теории и практики механики деформируемого твердого тела;
- современную практику строительной механики как прикладной составляющей механики деформируемого твердого тела.

Поступающий должен уметь:

- осуществлять простейшие научные исследования в области механики деформируемого твердого тела;
- самостоятельно осуществлять математические выкладки в соответствии с методологией научного исследования;
- профессионально излагать результаты научных исследований в виде докладов, статей, презентаций;
- разрабатывать новые методы исследований.

III. Примерный вариант задания

Поступающий получает 4 (четыре) вопроса, на которые он должен максимально расширенно письменно ответить приведением необходимых математических выкладок.

Вопрос №1. Основные уравнения теории упругости. Общая постановка задачи. Постановка задачи в напряжениях. Постановка задачи теории упругости в перемещениях.

Вопрос №2. Упругие пластины. Основные гипотезы. Перемещение, деформации и напряжения в прямоугольных пластинах. Усилия и моменты.

Вопрос №3. Задача Герца о сжатии упругих тел.

Вопрос №4. Концепция устойчивости упругих систем.

IV. Критерии оценивания работ поступающих

Критерии оценивания работ поступающих: полнота раскрытия вопросов экзаменационного билета; логичность И последовательность материала; аргументированность ответа; способность изложения анализировать и сравнивать различные подходы к решению поставленной проблемы; готовность отвечать на дополнительные вопросы по существу экзаменационного билета. Результаты вступительного экзамена оцениваются как «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» и объявляются в день экзамена.

Оценка, баллы	Критерии оценивания
Отлично	Даны исчерпывающие и обоснованные ответы
	на вопросы, поставленные экзаменационной

	комиссией
Хорошо	Даны полные, достаточно глубокие и
	обоснованные ответы на вопросы,
	поставленные экзаменационной комиссией
Удовлетворительно	Даны в основном правильные ответы на
	вопросы, поставленные экзаменационной
	комиссией; ответы на вопросы даются в
	основном полно при слабой логической
	оформленности высказывания
Неудовлетворительно	Не выполнены условия, позволяющие
	выставить оценку «удовлетворительно»;
	претендент демонстрирует непонимание
	вопроса; у претендента нет ответа на вопрос.

V. Рекомендуемая литература

Основная литература

- 1. Васидзу К. Вариационные методы в теории упругости и пластичности. М.: Мир, 1987.
- 2. Демидов С.П. Теория упругости. М.: Высш. шк., 1979.
- 3. Качанов Л.М. Основы теории пластичности. М.: Наука, 1969.
- 4. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1986.
- 5. Новацкий В. Теория упругости. М.: Мир, 1980.
- 6. Толоконников Л. А. Механика деформируемого твердого тела. М.: Высш. шк., 1979.
- 7. Седов Л.И. Механика сплошной среды. В 2х томах (2е издание). М.: Наука, 1988.

Дополнительная литература

- 1. Зубчанинов В.Г. Механика сплошных деформируемых сред. Тверь: ТГТУ, 2000.
- 2. Зубчанинов В.Г. Математическая теория пластичности. Тверь: ТГТУ, 2000.
- 3. Ивлев Д.Д. Теория идеальной пластичности. М.: Наука, 1996.
- 4. Ильюшин А.А. Пластичность. М., 1998.
- 5. Работнов Ю.Н Механика деформированного твердого тела. М.: Наука, 1979.
- 6. Тимошенко С.П., Гудьер Д.Ж. Теория упругости. М.: Наука, 1979.
- 7. Учайкин В.В. Механика. Основы механики сплошных сред. СПб.: «Лань», 2016.